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J. Phys. A: Math. Gen. 19 (1986) 2297-2316. Printed in Great Britain 

Supersymmetry, potentials with bound states at arbitrary 
energies and multi-soliton configurations 

C V Sukumar 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, 
Oxford OX1 3NP, UK 

Received 18 November 1985 

Abstract. The connection between the algebra of supersymmetry and the inverse scattering 
method is used to construct one-dimensional potentials with any specified number of 
non-degenerate bound states at arbitrary energies. The reflection coefficient of the potential 
so constructed is related to the reflection coefficient of a reference potential which supports 
no bound states. It is shown that, by choosing the reference potential to be V = O ,  it is 
possible to construct reflectionless potentials with bound states at arbitrary energies. The 
relationship of this construction based on supersymmetry to other known constructions of 
reflectionless potentials is established. It is shown that the symmetric reflectionless potential 
may be expressed as a linear combination of the squares of the bound state eigenfunctions 
with coefficients related to the wavenumbers associated with the bound states. 

1. Introduction 

It was first shown by Witten (1981) that the algebra of supersymmetry may be used 
to pair together two related Hamiltonians to construct supersymmetric quantum 
mechanics. Supersymmetric quantum mechanics is the study of the properties of 
Hamiltonians linked by the algebra of supersymmetry. The existence of a conserved 
supercharge associated with supersymmetry in supersymmetric quantum mechanics 
leads to the feature that the spectral properties of the members that form the supersym- 
metric pair are related to each other. This feature has aroused enormous interest in 
supersymmetric quantum mechanics. A variety of physical systems have been analysed 
using the concept of supersymmetry. It has been shown, for example, that the spectrum 
of the Dirac equation for a charged particle in a central Coulomb field can be explained 
simply by using the concept of supersymmetry (Sukumar 1985b). The level degeneracies 
of a Dirac electron in a constant magnetic field have been interpreted using supersym- 
metry (Khare and Maharana 1984, Blockley and Stedman 1985). The supersymmetry 
of the Dirac electron in the field of an electric monopole has been studied by d’Hoker 
and Vinet (1984) and Yamagishi (1984). The ‘accidental’ degeneracy of certain systems 
with spin-orbit coupling has been discussed using supersymmetry by Ui ( 1984), 
Balantekin (1985) and Niemi (1985). Kostelecky and Nieto (1984), Bemstein and 
Brown (1984) and Andrianov et a1 (1984) have discussed other applications of super- 
symmetry in atomic, nuclear and solid state physics. These are just a few examples 
of the variety of systems that have been analysed using supersymmetry. 

It has been shown (Andrianov et a1 1984, Sukumar 1985a,c) that the simplest 
non-trivial realisation of the algebra of supersymmetry leads to the result that every 

0305-4470/86/122291+ 20$02.50 @ 1986 The Institute of Physics 2297 



2298 C VSukumar 

one-dimensional non-relativistic Hamiltonian H can have a partner fi such that either 
(i) fi has the same set of eigenvalues as H except for missing the ground state of 3 
(ii) H has the same set of eigenvalues as I? except for missing the ground state of H 
or (iii) H and I? have identical spectra of eigenvalues. This result has been shown 
to be very useful in the study of inverse scattering (Sukumar 1985d). The inverse 
scattering method (Gelfand and Levitan 1955) provides a recipe for constructing 
potentials starting from the specific spectral features of a system. The concept of a 
supersymmetric partner can be used as the building block to construct the edifice of 
the inverse scattering method in a simple step by step procedure. Starting from a 
reference potential of known spectral features it is possible to construct a supersym- 
metric partner which differs from the reference system by the presence of a specific 
additional spectral feature (Sukumar 1985d). By repeating this procedure it is possible 
to construct potentials with any desired spectral features. In this paper it is shown 
that the algebra of supersymmetry may be used to construct potentials in one dimension 
which support any number of bound states at any specified energies. 

The plan of the paper is as follows: § 2 provides a summary of the method discussed 
by Sukumar (1985~) for introducing an additional bound state to a given spectrum of 
a reference potential using the algebra of supersymmetry. Section 3 illustrates the 
procedure by constructing potentials with one and two bound states. Section 4 gen- 
eralises this procedure to construct potentials with any number n of bound states at 
arbitrary energies Ei, i = 1,2, .  . . , n. It is also shown that reflectionless potentials with 
n bound states may be constructed by choosing the reference potential to be V = 0. 
It is shown that the symmetric reflectionless potentials form a subset of a class of 
reflectionless potentials. 

An algorithm for constructing symmetric reflectionless potentials with bound states 
at arbitrary energies was given many years ago by Kay and Moses (1956). This algorithm 
is known to be related to the algorithm for constructing multi-soliton solutions of the 
Korteweg-deVries equation (Gardner er al 1967, Scott et a1 1973). The confining 
potentials of quark-antiquark systems have been constructed phenomenologically using 
the multi-soliton algorithm (Thacker et a1 1978, Quigg et a1 1980). In § 5 of this paper 
the relationship between the different representations of symmetric reflectionless poten- 
tials is established. Section 6 contains the conclusions. 

2. Introduction of an additional bound state 

Let V ( x ) ,  -CO C x G CO, be a potential that supports bound states at energies E, = 
-y:/2p where p is the reduced mass. The Hamiltonian is given by 

1 d2 
2 p  dx2 

H = -- -+ V ( X ) .  

Let R( k) be the reflection coefficient for positive energies E = k2/2p. The procedure 
for finding a supersymmetric partner to H denoted by I?, whose eigenvalue spectrum 
consists of all the eigenvalues E, and in addition a ground state eigenvalue, d <E,, 
has already been given (Sukumar 1985~).  An outline of the procedure is given below. 
The energy d = - j 2 / 2 p  lies below the ground state of H and is not one of the 
eigenstates of H. Hence the two linearly independent solutions of the Schrodinger 
equation for the potential V at energy E, denoted by cp(,??) and ((E), are both 
non-normalisable. However, the two linearly independent solutions may always be 
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linearly superposed to produce a solution $(E) such that +(E) is nodeless in -a < x < 
CO. Let 

+ ( E ) =  cp(E)+at(E) .  (2) 

For a certain range of values of a denoted by 22 (a) the linear combination of cp (E)  
and ((I?) will remain nodeless. This in turn implies that there is a family of nodeless 
solutions + ( E )  corresponding to the range of values of a in 9 ( a ) .  For the sake of 
notational convenience this dependence on a will not always be explicitly indicated. 
Furthermore it is clear that since $(I?) grows at least as fast as exp( Tx) as 1x1 + a, the 
nodelessness of + ( E )  will guarantee that [+(g)]-' is normalisable. In terms of the 
non-normalisable but nodeless solution * ( E ) ,  H may be factorised as 

H = A+(&A-(&+ E (3) 

where 

A' (E)  ='( * - + f ( x ) )  d 
6 dx 

and 

(4) 

H has a supersymmetric partner 

( 5 )  

k given by 

B = A-(&A+(@ + E ( 6 )  

such that ( H  - I?) and (k - E)  are the diagonal elements of a supersymmetric Hamil- 
tonian given by the anticommutator 

%'= (0, Qt) (7) 

where 

Furthermore 

[Q, XI = 0 = IQt ,  21. (9) 

The existence of a conserved charge in supersymmetric systems leads to the general 
result that the partners of a supersymmetric pair have identical spectra except when 
the ground state of one member of the pair is annihilated by a charge operator. In 
the case of the supersymmetric system defined by (3)-(8), as shown in Sukumar (1985c), 
the solution of the Schrodinger equation for fi at energy E, denoted by $ ( E ) ,  is given 
by 

1 $(Z) =- *(U 
$ ( E )  is indeed the solution of - 

A + ( E ) $ ( E ) = O  E = E. (11) 
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Since [ J/ (  E)]-' is a nodeless normalisable function by construction, $( E) is the ground 
state of fi with eigenvalue E. A+(E)  is the operator that annihilates the ground state 
of fi. All other eigenvalues of fi are also eigenvalues of H and th:: solutions of the 
Schrodinger equations for fi and H at a common energy E are related by 

$ ( E )  - A-(JmE) ( 1 2 a )  

+ ( E )  - A + ( J W ( E )  E # E. ( 1 2 b )  

These intertwining relations between the solutions J/ and 4 are valid not only when 
E is one of the common discrete eigenvalues E ,  but also when E is positive and when 
E is negative, but E # E and E # E,. (12)  may be used to obtain a relation between 
the reflection coefficients of the potential V and the potential corresponding to fi 
given by 

For positive energies E = k 2 / 2 p  the boundary conditions 

lim $(x, E )  - eikr + R( k )  e-ikr 

lim +(x, E )  - T(  k) eikr 

( 1 4 a )  

(14b)  

x+-m 

x-+m 

lim $(x, E )  - eikr + i ( k )  e-ikr 
X+-m 

lim $(x, E )  - f( k )  eikx 
x - t m  

when combined with (12 )  show that 

Thus starting from a potential V with bound states at energies E,,, and positive energy 
reflection and transmission coefficients R ( k )  and T ( k ) ,  it is possible to construct a 
potential ? given by (13 )  which supports bound states at energies and E,. The 
ground state eigenfunction of is given by (10)  while the remaining eigenfunctions 
are given by (12 )  for E = E,. The reflection and transmission coefficients are given by 
( 1 5 ) .  

3. Potentials 

3.1. Potentials with a single bound state 

Let Vo(x) be a potential that supports no bound states and R o ( k )  be the reflection 
coefficient for positive energies. Using the procedure outlined in § 2 it is possible to 
find a potential VI which supports a single bound state at energy E ,  = - y : / 2 p .  Using 
( l o ) ,  V ,  may be written in the form 

1 d2 
VI = Vo-- T l n  Jlo(E,) 

P dx (16 )  
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where t,hO(El) is a nodeless unnormalisable solution of the Schrodinger equation for 
the potential Vo at energy E , .  (10) and (12) show that the eigenfunction for the ground 
state energy El  is given by 

where 

A ; ( E , )  =‘[-*+($In 6 dx tJIO(E1))]. 

The reflection coefficient of VI is given by 

y,-ik 
R,(k)=- RO(k). y ,+ik 

The above results may be illustrated by choosing Vo = 0. Ho is then the free particle 
Hamiltonian and Ro( k) = 0. (20) shows that the reflection coefficient of the supersym- 
metric partner H ,  also vanishes identically. It is clear that 

+ O R ( E l )  = cosh yl: + a, sinh y , ~  la11 < 1 .  (21) 

The condition la1[ < 1 ensures that cClo(E,) is nodeless although non-normalisable. The 
suffix R is added to indicate the reflectionless case. The reflectionless potential with 
a single bound state at E ,  is given by 

V I R =  -(?://A) sech2(y,x+tanh-’a,) (22) 

tJIIR(E1)  - sech( y lx+ tanh-’a,). (23) 

V l S R =  -(&/A) sech2 Y,X (24) 

and the ground state eigenfunction is given by 

For a, = 0, VIR is a symmetric potential. Using the suffix S to indicate ‘symmetric’ 

is the symmetric reflectionless potential with a single bound state at energy E , .  
Normalised eigenfunctions will hereafter be denoted by the addition of a tilde. In 
terms of the normalised ground state eigenfunction given by 

& s ~ E J  = ( ~ , / 2 ) ” ~  sech ylx ( 2 5 )  

the potential may be written in the form 

vlSR = -2( yl/ p )  $:SR( El). (26) 

3.2. Potentials with two bound states 

The procedure used in the previous section may be repeated to find a potential with 
two bound states at energies E ,  and E2 < El.  Using ( lo) ,  V2 is given by 

1 d2 
V2= VI---ln + , ( E 2 )  

p dx2 
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where qh1(E2) is 
for the potential 
eigenfunction is 

the nodeless non-normalisable solution of the Schrodinger equation 
Vl at energy E2 = - y:/21. (10) and (12) show that the ground state 
given by 

1 
$2(E2) - - 

* , ( E , )  
while the eigenfunctions for other energies are given by 

* 2 ( E )  - AT(J52)$1(E) E # E,  

where 

In particular the first excited state of V2 at energy El has the eigenfunction 

$2( E1 1 - AT ( E2) $1 ( E1 1. (31) 

Using (16) the potential V2 may be written in the form 

(32) 
1 d2 
1 dx2 v2= vo-- - - -~nE~o(~l )$ l (~2)1 .  

The reflection coefficient of V2 for positive energies is given, using (15) and (20), by 

y2-ik yl-ik 
y 2  + ik y1 + ik R2(k)=- - RO(k). (33) 

The above expressions for V2 and i,b2 are given in terms of the solution 4,. It would 
be more convenient to express all quantities in terms of solutions in the reference 
potential Vo which has no bound states. (18) and (19) show that 

These expressions may be used to write the potential with two bound states in the form 

1 d2 
V,= Vo---lndetD2. 

1 dx 
The ground state eigenfunction is given by 

The eigenfunction of the first excited state may be simplified to the form 

(37) 
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Thus the potential is expressed in terms of the second derivative of the determinant 
of D2 while the unnormalised eigenfunctions are given by the elements in the last 
column of the inverse of the matrix D2. The condition that $O(El) and $ , ( E 2 )  must 
be chosen to be nodeless is equivalent to the requirement that I)~( E,)  and E2)  must 
be chosen such that the determinant of D2 is free of zeros. 

To illustrate the above results the case Vo = 0 may be considered as in P 3.1. When 
Vo = 0 the reflection coefficient of the resulting potential with two bound states also 
vanishes as shown by (33) for Ro( k )  = 0. It is easy to see that 

E , )  = cosh y ,x  + a ,  sinh y , x  

E,)  = sinh y2x + a2 cosh yzx. 
(40) 
(41) 

The condition that det D2 be free of zeros can be met only if )a,) < 1 and /a2/  < 1. The 
symmetric reflectionless potential with bound states at E ,  and E 2 ,  obtained by choosing 
a ,  = 0 and a2 = 0, is given by 

where 

1 cosh y ,x  sinh y2x 

y1 sinh y l x  y 2  cosh y2x 
DZSR = (43) 

The potential may be reduced to the form 

(44) 
y:- r: 

p 

7: cosh2 y ,x  + y: sinh2 y2x 
( y2  cosh y2x cosh y,x - y, sinh y2x sinh y l x ) ’ ’  

V2SR=--  

Using (38)  and (39) and the results in appendix 3 the normalised eigenfunctions may 
be written as 

In terms of these normalised eigenfunctions the symmetric reflectionless potential may 
be written in the form 

2 

F 
V 2 S R =  --[72$:SR(E2) + ?I$$SR(E1)l* 

Certain features of VZsR may be readily established: 

[1+ (3y: - y i ) x 2 + .  . .] r:- r: lim V2SR(x) = -- 
P x-ro 

d 
lim - VZsR(x) = 0 
x-0 dx 

lim VZsR( X) = 0. (47d) 
I+m 

Analysis of these limits, together with the condition for the vanishing of d/dx( VZSR), 
shows that 
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-4  - 2  0 2 4 x  

. . - - _ _  . . . - 

id) 

v ( x )  

Figure 1. A symmetric reflectionless potential with bound states at energies E, = - y : / 2 p  
and E , =  - y i / 2 p  for p = 1, y ,  = 1 and yz  = ( a )  1.1, ( b )  1.3, ( c )  1.5, ( d )  2.0. The locations 
of the bound levels are indicated by broken lines. 

(i) if y:> 3 y:, x = 0 is a minimum of the potential and there are no additional 
minima. VzsR is then a symmetric single well. In particular if y: = 47: the resulting 
potential is 

V 2 S R =  -3(y:/p) Y , X  (48) 

i.e. v 2 s R  is a sech’x potential with bound states at - 2 y : / p  and - y : / 2 p ;  
(ii) if y: < 3 y:, x = 0 is a maximum of the potential and there is a pair of additional 

minima for IxIZO. V,,, under these conditions is a symmetric double well. If, 
furthermore, y: < 2 y:, then VZsR(x = 0) > E2 and at least the ground state lies inside 
the double well. If y: < y: both the ground state and the first excited state lie inside 
the double well. These features are illustrated in figure 1. The above analysis shows 
that a class of symmetric reflectionless double well potentials with two bound states 
at specified energies El and E 2 ,  E2 < 3 E ,  may be simply defined. 

4. Potentials with arbitrary number of bound states 

By extension of the procedure outlined in 9 9  2 and 3 it is possible to construct a 
hierarchy of Hamiltonians with successively increasing numbers of bound states starting 
from the Hamiltonian Ho with no bound states. Denoting the Hamiltonian with n 
bound states by H, and the ground state energy of H ,  by E,: 
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and is a non-normalisable nodeless solution of the eigenvalue equation for 
H,-l at energy E ,  which lies below the ground state of Hm-l. The potentials in the 
hierarchy are related by 

The ground state eigenfunction of Hm is given by 

$m ( E m  1 - 1 / $m - 1 ( E m  ) (53) 

while all the other eigenfunctions of Hm are given in terms of the eigenfunctions of 
H m - 1  by 

$m ( Ei 1 - A i  - 1 ( E m  1 $m - 1 ( Ei 1 i = l , 2  , . . . ,  m - l ; m = 1 , 2  , . . . ,  n. (54) 

This network of interrelated eigenfunctions can be disentangled to express all eigen- 
functions in terms of the solutions in the reference potential Vo. Iteration of (52) 
shows that the potential with n bound states is related to Vo by 

1 d2 
P dx 

Vn = V0-w ~ [ l n  $dEl)$I(&) * * - $ n - I ( E n ) I *  (55) 

Using appendix 2, the product of wavefunctions in the above equation may be expressed 
in terms of the solutions Go(&) in the potential V,, for various energies Ei. It is then 
possible to express V,, in the form 

1 d2 
V,= Vo---lndetD, 

P dx 
where the n x n matrix D,, is given by 

dJ-I 
[ Dn 1JK = dx/-' $o( EK J , K = 1 , 2  ,..., n. (57) 

The eigenfunctions of the potential V,, may be expressed in the form 

J l n ( E i ) -  [ O i ' I i n  i =  1 , 2 , . .  ., n. (58) 
The proof that the elements in the column n of the inverse of the matrix D,, are indeed 
the eigenfunctions of the potential Vn in (56) with eigenenergies Ei ,  i = 1,2,  . . . , n is 
given in appendix 2. The requirement that $m-I(Em), m = 1 ,2 , .  . . , n, be nodeless can 
be met by choosing the non-normalisable solutions +bo(Em), m = 1 ,2 , .  . . , n, such that 
det D,, has no zeros. The eigenfunction relation given in (54) may be extended to 
positive energies to show that the reflection coefficient of Vm is related to the reflection 
coefficient of Vm-l by 

ym -ik 
ym+ik  R,(k)=- R m  - 1 ( k). (59) 
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Iteration of this relation gives 

Equations (56), (57) and ( 5 8 )  provide a recipe for constructing potentials with bound 
states at specified energies E, and reflection coefficient for positive energies given by 

The algorithm for constructing reflectionless potentials with n bound states is a 
particular case of the procedure given above corresponding to the choice Vo = 0. Since 
R o ( k )  = O  when Vo=O, R,(k) also vanishes identically as shown by (60). The free 
particle solutions GOR at energies E, are given by 

(60). 

It is easy to show that det D, for this choice of Go has no zeros provided (U,[ < 1, 
m = 1,2, .  . . , n. A symmetric reflectionless potential with n bound states may be 
obtained by choosing U, = 0, m = 1,2, . . . , n. The potential so obtained is given by 

where the elements of the matrix D n S R  are given by 

=t(YK)’-l[eyKx+(-l)’+K e -Y~X] .  

The unnormalised eigenfunctions are given in terms of the elements in the column n 
of the inverse of the matrix D n S R  by 

GnSR(  Ei) - [ D n k R l i n  i =  1 ,2 , .  . . , n. (64) 

The normalisation of these eigenfunctions is discussed in appendix 3. The normalised 
eigenfunction for the eigenenergy E, may be written in the form 

The relationship of the representation of the symmetric reflectionless potentials given 
in (56) and (57) to other seemingly different representations of the same potential is 
discussed in the next section. 

5. Equivalence of reflectionless potentials 

The matrix DnSR in (63) for the case of the symmetric reflectionless potential may be 
written in the form 

D n S R  =;[AI + A21 (66) 

[Allu = 7 i - I  eYF (67) 

where the elements of AI and A2 are given by 

(68) [A 3 - (-l)i+JYi-l e-79. 
2 il- 
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The matrix A, can be easily inverted. The elements of A;' are given by 
I \ - 1  

where fil are coefficients in the expansion 

K # i  J = l  

By considering a diagonal matrix G whose elements are related to the normalisation 
coefficients of the eigenfunctions discussed in appendix 3 and given by 

it can be shown after straightforward algebra that the matrix M defined by 

M = 2GA;'DnsRG-' (71) 

has elements 

where 

A J ( x )  = Cj 

and 

(73) 

The analysis of Kay and Moses (1956) and the n-soliton solution of the Korteweg- 
deVries equation (Gardner et a1 1967, Scott et a1 1973) lead to the result that the 
symmetric reflectionless potential may be expressed in terms of the matrix M in the form 

1 d2 
V = - -  7 In det M. 

Y dx 

Since 

det M = 2(det DnsR)(det A;')  

and 

det A;' OC exp( -? y i x )  

it is clear that 

d2 d2 -In det M = - In det &R. 
dx2 dx2 

(75) 

(77) 

This equality shows that the reflectionless potentials defined by (62) and (75) are 
identical. 
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It is shown in appendix 4 that the reflectionless potential with n bound states may 
be expressed in terms of the normalised bound state eigenfunctions in the form 

Equation (79) is the generalised form of the result shown by (26) and (46) for the 
cases n = 1 and n = 2. 

6. Conclusions 

It has been shown that by repeatedly using the algebra of supersymmetry in a step by 
step fashion it is possible to construct potentials with bound states at arbitrary energies. 
It has been shown that the non-normalisable solutions in a reference potential which 
supports no bound states constitute the input in this construction. The reflection 
coefficient of the potential with n bound states constructed by this procedure is related 
to the reflection coefficient of the reference potential. V,, is in general not only a 
function of the n bound state energies E, but also a function of n parameters ai, 
i = 1 , 2 , .  . . , n. a, characterises a particular linear superposition of the two linearly 
independent non-normalisable solutions in the reference potential Vo at energy E, .  a, 
can take such values that ensure that the determinant of D,, is free of zeros. By choosing 
the reference potential to be Vo=O reflectionless potentials with n bound states may 
be constructed. The reflectionless potential so obtained is not necessarily a symmetric 
function of x. It has been shown that by choosing the parameters ai to have specific 
values symmetric reflectionless potentials can be constructed. The resulting symmetric 
potential has been shown to be identical to the potential constructed using the n-soliton 
solution of the Korteweg-deVries equation. It has also been demonstrated that the 
symmetric reflectionless potential may be expressed in terms of the normalised bound 
state eigenfunctions in a particularly simple manner. 
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Appendix 1 

The Schrodinger equation for the Hamiltonian H,, defined in (50) leads to the solution 
+, , (E)  for energy E. + , , ( E )  is linked to the solution I ) , , -~(E)  of the Hamiltonian H,,.-l 
by (53) and (54). This wavefunction relation may be written in the form 

where E,, is the ground state energy of H,,. Hence 

(Al . l )  

(Al.2) 
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Now let 

(A1.3) 

O I  

+n -2( E n  -1 1 0 
+ n - I ( E n )  + n - I ( E )  * 

Jtn  - 1 (En Jtn - 1 ( E  
F = +n -2(  E n  -1) +n- 1 (En +n ( E ) = det 

To express F entirely in terms of the solutions of 
the solutions of Hn-l in terms of the solutions of Hn-2:  

(54) can be used to express 

(A1.4) 

The first derivative of (A1.4) gives 

Using the alternate expression of (A1.4) in the form 

it is possible to write 

where 

(A1.6) 

(A1.7) 

(Al.8) 

Applying (A1.8) for 
A, namely 

= En and I? = E and using a matrix relation valid for any matrix 

.et[ 2;; = det[ A22 i7.3 ] (AI .9) 
0 0 

0 A32+ffA22 A 3 3 + f f A 2 3  

it is then possible to write F as 

F = det 

(Al .  10) 

(Al.11) 
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For any matrix B 
Bl 1 B12 - PBl 1 B13 - EB1 1 

BZ1 B22-PB21  B23- &BZl 
B31 B 3 2 - P B 3 1  B 3 3 - E B 3 1  

for any values of P and E. By choosing 

p = - =  BIZ *,-2(Efl)  

Bll * n - 2 ( E n - 1 )  

and 

E = - =  B13 $n-2(E) 

4, *n-2(%1) 

it is easy to show from ( A l . l l )  and (A1.12) that 

F -  G. 

(A1.12) 

(Al .  13) 

( A l .  14) 

(A1.15) 

G is expressed entirely in terms of solutions of the Schrodinger equation for the 
Hamiltonian The procedure given above may be extended to write any product 
of wavefunctions of the form I(lm(Em+l)$m+l(Em+2). . . & , - l ( E n ) + n ( E )  as a determinant 
involving only the solutions of Hm and their various derivatives. The procedure is 
straightforward but tedious. The method of proof is indicated below. Assuming that 
the determinantal relation is true for m = n - k, it is possible to prove that it is also 
true for m = n - k - 1 by making use of the relations between the wavefunctions given 
by (54). Since (A1.2), (Al.lO), (A1.12) and (A1.15) show that the determinantal relation 
is true for m = n - 1 and m = n - 2, it is then possible to conclude by inductive reasoning 
that it must be true for any m. It is thus possible to write 

1 .  *o( El 1 (Clo(J52) . . *  cClo(E.1 
*o( El 1 &O(EJ . ' *  &,(En) 

+ ~ ( E l ) $ l ( & ) .  * +n-l(En)-det 

(A1.16) 

The elements of the matrix in (A.16) denoted by D, may be written in the compact form 

Appendix 2 

In this appendix it is proved that the eigenfunctions of 

1 d2 
V, = Vo- -  T l n  det D 

I-L dx 
(A2.1) 
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are given by the elements (D-l)i,,, i = 1,2 , .  . . , n. t,ba(E,) are the solutions of the 
Schrodinger equation for the potential V,, i.e. 

(‘42.3) &a(& 1 = [ d + 2P Val t,bd E, 1. 
Therefore 

&r = [r:+2PVOIDKJ. (A2.4) 

Let B = D-’. Then 

BD=DB=Z ( ‘ 4 2 . 5 )  

where Z is the unit matrix. Hence 

(‘42.6) 
d2 

dx2 
-[ DB] = B B  + 2 b h  + Dii = [O] 

where [O] is the null matrix and a dot above a matrix indicates that each element of 
the matrix is differentiated once. Therefore 

(A2.7) 
d 

dx 
i i=BijB-2B-[bB]. 

Using (A2.4) it is easy to show that 

(‘42.9) 

(A2.10) 

Let J,, be the determinant of the cofactor of the element Dni. Then 

A n  B.  =- 
In  det D 

and 

(A2.12) 

( A2.13) 

The derivative of a determinant may be evaluated by differentiating the elements in a 
particular row i of the matrix, evaluating the determinant of this new matrix and then 
summing over i. When the row i ( i  # n )  of the matrix D defined by (A2.2) is 
differentiated, the resulting matrix D ( i )  has identical elements in the rows i and i + 1 
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and hence the determinant of D ( i )  vanishes. But when the row n of the matrix D is 
differentiated the resulting matrix D'"' has a non-vanishing determinant. Therefore 

d - det D = det D'"' = det 
dx 

211-2  ~ n - 2  ~ n - 2  

It is easy to show from this expression that 

d " d  
- det D = fin-D,,,. dx J = I  dx 

Using (A2.12) it is then possible to show that 

d 
-In det D = [BBInn. 
dx 

(A2.8), (A2.11)  and (A2.16) can be combined to give 

d2 ( dx2 
yf+2pV0-2 -1n det D 

(A2.14) 

(A2.15) 

(A2.16) 

(A2.17) 

(A2.17) shows that Bin = (D-l)in is indeed a solution of the Schrodinger equation for 
the potential V, given by (A2.1) for the eigenenergy Ei = - yf/2p. 

Appendix 3 

The normalisation of the eigenstates of symmetric reflectionless potentials is discussed 
in this appendix. The symmetric reflectionless potential with n bound states is given by 

1 d2 
p dx2 

v,, = -- -In det D, (A3.1) 

where 

[DnIIK = iy;- ' [eYKx+ ( -l)'+K e-Y~X].  (A3 -2) 

The determinant of 0, may be easily evaluated in the limit X + C O  to give 

It was shown in appendix 2 that the unnormalised eigenfunctions of V, are given by 

+n(Ei) = [Di'Iin i =  1 , 2 , .  . . , n. (A3.4) 
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The determinants involved in the definition of the elements of the inverse matrix can 
also be evaluated in a similar manner in the limit x + 03 to give 

The same argument can be applied to the eigenfunctions of the potential with ( n  - 1)  
bound states to give 

(A3.6) 

But the unnormalised eigenfunctions +,,(Ei) and I,!I,,-~(E~) are related as shown in (54) 
by 

The constant A i  can be determined by considering the x+oo limit of (A3.7). Using 
the relation 

lim ~ n - l ( E , ) - e Y ~ x  
X’CC 

it is possible to show from (A3.5)-(A3.8) that 

Ai  = (7; - $ ) - I .  

Hence - 

(A3.9) 

(A3.10) 

and 

Partial integration of the integral on the right-hand side of the above equation and 
use of the expression for A:-l given by (51 )  then shows that 

But from (50) 

Therefore 
(A3.13) 

(A3.14) 

When n = l  

and so 

(A3.16) 
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Repeated application of (A3.14) for i = 1 then shows that 

When n = 2, it is easy to show that in terms of the eigenfunctions 

sinh y2x cosh ylx 
+2(El) = +2(E2) = 

the potential V2 is given by 

But 
m 

=2(y2+y, )  
-W 

and from (A3.17) 

(A3.19)-(3.21) may be compared to give 

Repeated application of (A3.14) for i = 2 then shows that 

( A3.17) 

(A3.18) 

(A3.19) 

(A3.20) 

(A3.2 1 ) 

(A3.22) 

(A3.23) 

Examination of the expression for the elements of 0;' shows that [ D Z 1 ] J + 2 , n  is obtained 
from [&']J,, by the substitution Ej ++ E J + ~  while all the other energies are left 
unaltered. By using this symmetry property the normalisation factors for all the 
eigenfunctions can be obtained from those for +,(El) and +, , (E2) .  From (A3.17) and 
(A3.23), by symmetry 

The normalised eigenfunctions of V,, are therefore given by 

Appendix 4 

(A3.24) 

(A3.25) 

In this appendix it is proved that the symmetric reflectionless potential with n bound 
states may be expressed as a sum over the squares of the normalised eigenfunctions 
with simple coefficients. In $ 5  of the main text it was shown that the symmetric 
reflectionless potentials constructed using the algebra of supersymmetry is the same 
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as the potential used by Thacker et a1 (1978). The asymptotic behaviour of the 
normalised eigenfunctions of V,, given by (A3.25) may be inferred using (A3.4) and 
(A3.5) to be 

(A4.1) 

In terms of the coefficients Cj  defined by (74) the normalised eigenfunctions can then 
be written in the form 

(A4.2) J n  ( Ei = Ciqi- 

Then 

(A4.3) 

The function pi defined by (A4.2) and (A4.3) is the same function as the 'pi defined 
by Thacker et al. It is shown by Thacker et a1 that 'pi satisfies 

and 

+ j  = (yf+2pVn)rpj. 

By differentiating (A4.4) and using (A4.5) it is easy to show that 

(A4.4) also gives 

Therefore 

Use of the expansion 

(A4.4) 

(A4.5) 

(A4.6) 

(A4.7) 

(A4.8) 

(A4.9) 

obtained from (A4.4) in the first term on the right-hand side of (A4.8) enables the 
writing of (A4.6) in the form 

( A4.10) pv,, = -2 C yic:Cpi + F ( x )  
i 

where 
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The first term in the above equation may be written in the symmetric form 

The second term of (A4.11) can be simplified using (A4.7). These simplifications lead 
to the expression 

Therefore 

Use of (A4.5) and (A4.6) then shows that 

d F l d x  = 0. 

(A4.13) 

(A4.14) 

(A4.15) 

Furthermore, (A4.3) and (A4.13) show that F ( x  = 00) = 0. Since (A4.15) is valid for 
any value of x it is now possible to conclude that F ( x )  = 0 for all values of x. In terms 
of the normalised eigenfunctions defined by (A4.2) it is then possible to write (A4.10) 
in the form 

(A4.16) 

It must be noted that the results derived in appendices 3 and 4 apply only to 
symmetric reflectionless potentials. The suffix SR used in the main text is omitted in 
appendices 3 and 4 for simplicity 3f notation. 
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